Simplify3D - ABS lego blocks

ABS

ABS is a low-cost material, great for printing tough and durable parts that can withstand high temperatures.

Printability
Strength
Stiffness
Durability
Price

Overview

ABS (Acrylonitrile Butadiene Styrene) has a long history in the 3D printing world. This material was one of the first plastics to be used with industrial 3D printers. Many years later, ABS is still a very popular material thanks to its low cost and good mechanical properties. ABS is known for its toughness and impact resistance, allowing you to print durable parts that will hold up to extra usage and wear. LEGO building blocks are made from this material for that same reason! ABS also has a higher glass transition temperature, which means the material can withstand much higher temperatures before it begins to deform. This makes ABS a great choice for outdoor or high temperature applications. When printing with ABS, be sure to use an open space with good ventilation, as the material tends to have a slight odor. ABS also tends to contract quite a bit as it cools, so controlling the temperature of your build volume and the part inside can have major benefits.

Pros

  • Low Cost
  • Good impact and wear resistance
  • Less oozing and stringing gives models smoother finish
  • Good heat resistance

Cons

  • Heavy warping
  • Needs heated bed or heated chamber
  • Produces a pungent odor while printing
  • Parts tend to shrink leading to dimensional inaccuracy

Hardware Requirements

Before 3D printing with ABS make sure your 3D Printer meets the hardware requirements listed below to ensure the best print quality.

Bed

Bed

Temperature: 95-110 °C
Heated Bed Required
Enclosure Recommended

Build Surface

Build Surface

Kapton tape
ABS Slurry

Extruder

Extruder

Temperature: 220-250 °C
No special hot-end required

Cooling

Cooling

Part Cooling Fan Not Required

Best Practices

These tips will help you reduce the chances of common 3D printing issues associated with ABS such as warping and fumes.

Control Warping

One of the most common print quality issues with ABS is warping. As the plastic cools from its extrusion temperature down to the room temperature, this change in temperature causes the plastic to shrink and contract. This can be particularly troublesome for the first layer, as this change in size can frequently cause the part to separate from the bed, ruining the print. You can minimize this effect using a proper build surface heated to 110º C. The build platform will transfer some of its heat to the first few layers of your part, which will prevent them from shrinking and separating from the bed. It is also common to set the extruder temperature about 10 to 20 degrees higher for the first few layers of your print, which can also help reduce the risk of separation. Simplify3D gives you complete control over your bed and extruder temperatures, so you easily set the desired values on a per-layer basis using the Temperature tab of your process settings. While these changes can help with the bottom layers of your print, taller parts may have issues as the layers get further away from the bed. When printing larger parts, consider adding an enclosure around your printer to maintain a higher temperature around your print. The enclosure can also prevent wind drafts that could rapidly cool the part during printing. If you’ve followed these steps, but you’re still having trouble with warping and separation, our Print Quality Guide has an entire section dedicated to warping which can give you even more information on the topic: How to Prevent Warping.

Using Brims and Rafts

When printing large parts, or thin delicate parts, you may find that you still have trouble getting these parts to properly adhere to the bed. In these cases, adding a brim or a raft to your print can be a great way to anchor these part to the build platform and prevent warping. A brim will add several rings of plastic around your model on the first few layers, creating extra surface area to hold down the edges of your part. Using a raft will actually print an entirely new plastic structure underneath your print, which can be removed after the print is completed. The rafts in Simplify3D were heavily optimized for Version 4.0 allowing them to print faster and use more material, but you may still find that a brim is faster for larger parts. If you want to learn more about these options, we have an in-depth article that explains all of the differences between rafts, skirts, and brims to help you get started.

Print In a Well Ventilated Area

Printing with ABS is known to produce a strong odor with fumes that could potentially be harmful if inhaled in large quantities. Avoid confined spaces and place your printer in a well-ventilated area to avoid these issues. Newer 3D printers may include a separate air-filtration system or HEPA filter that can deal with these fumes right from the source. If you printer doesn’t include these features or you’re limited in where you can place it, consider opening a window or using a flexible air duct from your local hardware store to help route the fumes outside.

Pro-Tips

  • Bed adhesion can be improved by using an ABS slurry. You can make this slurry on your own by mixing small pieces of ABS filament with acetone and applying the mixture on the bed. There are also several pre-packaged versions of the product that can be purchased.
  • When doing a dual extrusion print, PLA can be a good break-away support material as it does not adhere strongly to ABS.

Get Started with ABS

Here are a few tips to help you get started with ABS. You can view some common applications below, select from a typical sample project, or even view popular filament brands if you’re looking to stock up on this low cost material.

Common Applications

  • Cases or Project Enclosures
  • Toys or Action Figures
  • Automotive hardware

Popular Brands

  • Hatchbox ABS
  • FormFutura ABS pro, EasyFil ABS, TitanX
  • eSun ABS, ABS+
  • HobbyKing ABS

Want to see how ABS stacks up against other materials?
Click below to view our extensive Properties Table with a complete side-by-side comparison.